The warm-up procedures (dry and in-water) consisted of their typi

The warm-up procedures (dry and in-water) consisted of their typical PD173955? warm-up frequently performed before a competitive swimming event (total volume: 1000 m). After 10 min rest, the tethered swimming protocol was implemented. One day after, the same protocol was repeated, but without warming up. The swimmers were wearing a belt attached to a steel cable (negligible elasticity). As the force vector in the tethered system presented a small angle to the horizontal, computing the horizontal component of force, data was corrected. A load-cell system connected to the cable was used as a measuring device, recording at 100 Hz with a measure capacity of 5000 N. The data obtained was transferred by a Globus Ergometer data acquisition system (Globus, Italy) that exported the data in ASCII format to a computer.

Individual force to time F (t) curves were assessed and registered to obtain maximum force (Fmax, the highest value of force produced in first 10 s) absolute and relative values and; mean force (Fmean �C average force values during the 30s test) absolute and relative values. The test started after an acoustic signal, with the swimmers in a horizontal position, with the cable fully extended. The data collection started after the first stroke cycle to avoid the inertial effect of the cable extension after the first propulsion. The swimmers swam as natural as possible during 30 s, at maximum intensity. Additionally, capillary blood samples were collected from the fingertip before and after each tethered swimming (at the 1st and 3rd min of recovery) to access the higher values of blood lactate concentration ([La-]) (Accutrend Lactate?Roche, Germany).

The values of [La-]net were determined by the difference between [La-] after the test and the resting values. The Borg (1998) ratings of perceived exertion (RPE) scale was used to quantify exercise level of exertion after each test. Statistics Standard statistical methods were used for calculation of means and standard deviations. Normality was determined by Shapiro-Wilk test. Since, the very low value of the N (i.e., N < 30) and the rejection of the null hypothesis (H0) in the normality assessment, non-parametric procedures were adopted. In order to compare the data obtained with and without warm-up, non-parametric Wilcoxon signed rank test was used. Differences were considered significant for p �� 0.05.

Results Table 1 presents the mean �� SD values for the tethered absolute variables, namely the maximum force and mean force. Significant differences were evident for the data obtained on tethered front crawl swimming test after warm-up and without warm-up. The warm-up condition presented higher values. Cilengitide Table 1 Mean �� SD values of maximum (Fmax) and mean forces (Fmean) exerted during the tethered swimming test. P-values are presented Figure 1 presents relative values of the maximum and mean forces in both conditions.

The subjects were fitted with a chest HR transmitter and wrist mo

The subjects were fitted with a chest HR transmitter and wrist monitor recorder. HR was recorded, from the beginning of the session, using individual Polar RS400 (Polar? Vantage selleck NV, Polar Electro Oy, Finland), and subsequently exported and analyzed using the Polar Pro-Trainer? software program (Polar Electro Oy, Finland). The subjects could not see their HR measurements during the experimental trial, because it could influence their perceived effort on the Borg and OMNI RPE scales. For this reason, a sticker was placed on each HR monitor. The experimental trial was divided into four stages: a warm-up (10 minutes in a seated position, with a cadence of 90�C100 RPM (revolutions per minute)), a main phase (35 minutes, where the subjects alternated between normal seated positions and seated and standing climb cycling, between 60�C80 RPM in climb techniques and between 80 �C 110 RPM in normal seated cycling).

Then, a cool down (5 minutes, with a cadence of 80�C100 RPM) in a seated position and, finally, stretching exercises, of the principal muscles used in the session off cycling. During the experimental trial, HR was recorded every 5 s. The participants were instructed to follow the directions of a qualified indoor cycling instructor, which included recommended frequencies of pedalling (RPM) in each phase of the session and recommended cycle resistance. The instructor provided feedback to help the subjects to regulate their intensity. Although the resistance of the cycle could be freely changed by the participants during the session, the study subjects had to follow the instructions about the resistance and the RPM indicated by the instructor.

The Borg 6�C20 RPE and the OMNI 0�C10 scales were used to assess perceived exertion. The RPE is a 15-point single-item scale ranging from 6 to 20, with anchors ranging from 6 ��No exertion�� to 20 ��Maximum exertion��. The OMNI 0�C10 scale has a category rating format that contains both pictorial and verbal descriptors positioned along a comparatively narrow numerical response range, 0�C10. Each pictorial descriptor is consistent with its corresponding verbal descriptor, from 0 ��Extremely easy�� to 10 ��Extremely hard��. Both RPE scales were positioned within sight in the indoor cycling room. The subjects were instructed to give an overall perception about how hard the exercise felt according to both RPE scales every five minutes, from the start to the end of the indoor cycling session.

These values were written on a record sheet which the subjects had on their handlebars. Before the measurements, subjects were asked to read instructions on how to use these scales. A familiarization period of two weeks (and a minimum of 3 sessions per week) prior Anacetrapib to the experimental trial was carried out to accustom the participants with the Borg and the OMNI RPE scales. The first session consisted of familiarization to the RPE scales.

This competition took place two days before spinal segment mobili

This competition took place two days before spinal segment mobility was measured. Spinal mobility was determined by the electrogoniometric method using a Penny & Giles electrogoniometer (Biometrics selleckchem Ltd, Gwent, UK) that took measured angular movements in individual spinal articulations (Troke and Moore, 1995; Thoumie et al., 1998; Christensen, 1999; Lewandowski, 2006). This method is characterized by high reliability and precision, and the obtained results are comparable to those determined radiologically and to Polish population normative values (Lewandowski, 2006). The measurements were taken in cervical, thoracic and lumbar spinal segments.

Spinal mobility was determined in coronal, sagittal, and transverse planes, and the respective asymmetry coefficients were calculated based on the following formula (Siniarska and Sarna, 1980): A=Xp?Xl(Xp+Xl)2*100% A �C asymmetry coefficient; Xp �C the value of a given characteristic determined on the right side; Xl �C the value of a given characteristic determined on the left side. Direct values of asymmetry coefficients (Am) were calculated for the mobility of individual spinal segments, and coefficients of correlation were calculated between those parameters and the paddling speed. This method enabled us to analyze the potential associations between the degree of asymmetry and the racing speed, irrespective of the side of the boat chosen by the canoeists for paddling. All the procedures of this study were approved by the Local Ethics Committee by the Karol Marcinkowski University of Medical Sciences in Poznan, Poland.

Analysis All calculations were carried out using the Statistica 9.0 package (StatSoft, Inc. 1984, 2011, license no. AXAP012D837210AR-7). The results were presented as arithmetic means (M), �� standard deviations (�� SD), and the normality of their distributions was verified. Mean values of analyzed parameters determined in athletes paddling on the right and left side of a canoe were compared using ANOVA. Post-hoc tests were used for detailed comparisons of parameters with normal distributions. Due to high variability in the sample size of canoeists paddling on the right or the left side, the Tukey test for unequal samples was used as a post-hoc test. The Kruskal-Wallis test was used for comparisons of variables with non-normal distribution.

Additionally, Pearson��s and Spearman��s coefficients of correlation were calculated between the asymmetry coefficients and paddling speed. Statistical Batimastat significance was defined as p<0.05. Results No significant differences were observed between mean V of right- and left-paddling athletes (Table 1). The only observed significant difference in spinal mobility pertained to the maximal left rotation of the cervical spine (CTL): it was lower in right-sided paddlers (RP) than in left-sided paddlers (LP), 60.38 and 67.7, respectively, for RP and LP left side of the canoe.

, 2009) In short, it is obvious that this anthropometric charact

, 2009). In short, it is obvious that this anthropometric characteristic allows them to cover the wider space of the goal and hence www.selleckchem.com/products/MDV3100.html to defend the net more successfully. Because of the constant contact during the game, Centers are known to be the largest of all players in terms of body length and body mass. Therefore, it was not surprising that, although similar to the Points and Goalkeepers in BH, the Centers are the heaviest and have the highest BMI of all five playing positions. Apparently, their increased BM and BMI are partially but not entirely related to increased body fat (i.e. Centers have higher skinfolds than the Goalkeepers and Wings, but there is no significant difference in any of the body fat measures between the Centers, Points and Drivers).

This is in line with previous findings where authors discussed the clear need for a Center��s morphological-anthropometric dominance in terms of advanced BM, especially against rival Points (M. Lozovina, et al., 2009). More precisely, these two playing-positions are direct opponents (i.e. the Point guards the offensive Center) and if a Center wants to be effective in his/her offensive tasks, he/she must be physically superior to the defensive player guarding him (her). Although previous studies rarely studied water polo goalkeepers with regard to their anthropometric status, the results of the Goalkeepers�� anthropometric variables did not surprise us. Most particularly, they are slightly, although not significantly dominant in AS, and have the lowest BMI of all players.

Such an anthropometric profile allows them to cover the net efficiently (because of their large arm span) and to change position quickly (because of their low BMI). Since the official rules of water polo protect Goalkeepers from the contact-game, their low BMI is clearly a function of their agile movement and quick positioning in front of the goal with regard to offensive actions and his/her team��s defensive tactics. The importance of the specific physical fitness profile of different playing positions is already recognized in team sports (Ben Abdelkrim et al., 2010; Markovic and Mikulic, 2011; Pyne et al., 2006), but such studies are evidently scarce in water polo, especially among junior players. Therefore, the results of the specific physical fitness tests we presented above are hardly comparable to previous findings.

Although the playing positions did not differ significantly in the lactate capacity (4x50m) and 100m swimming results, the swimming performance GSK-3 measured by swimming 25m (ATPCP capacity), and 400m (aerobic capacity) revealed the Points to be the best swimmers. According to previous studies, the background to such findings should be identified through anthropometric profiles. In a recent study where authors identified the optimal morphological/anthropometric characteristics of young competitive swimmers, Sekulic et al.