With the development of economy, and with people’s health conscio

With the development of economy, and with people’s health consciousness constantly improving, the hope that the remote real-time monitoring of human physiological signals for health-related purposes can be implemented in time for the advance disease treatment and intervention, to greatly reduce the medical cost and improve the quality of people’s life, is of great significance. Tello, et al. [8] proposed a physiological signal remote-monitoring-and-control system, designed to collect information on body temperature, etc., and to communicate with a computer or a mobile device via a Bluetooth module. References [9,10] mention that a wireless body area network (WBAN), specifically centered on Zigbee wireless or Bluetooth technology to access the Internet, can be used to establish contact with a remote medical facility or service companies, for remote monitoring of physiological parameters.

The RFID sensors, being small and inexpensive are favored by medical health care [11,12]. Hong Kong’s RenAn hospital is successfully using RFID temperature-sensing technology to measure babies’ temperature; also Singapore’s Tan Tock Seng hospital uses RFID-temperature-sensing technology to measure the patient’s temperature. Their system greatly reduces the amount of labor required of medical staff to facilitate the medical treatment of patients.In recent years, RFID technology with its non-contact, non-line-of-sight, short-time-delay, high-precision and low-cost advantages has been widely used in indoor localization systems [13].

A variety of the RFID technology localization approach [14�C19] has appeared which is using the received signal strength indicator (RSSI) methods. Based on its advantages of low power and low-cost, the method has been used in practical location systems, such as LANDMARC [20,21] and the like. This method does not change the reader and the active tag hardware, the only requirement being the design of a special localization algorithm; in what concerns the reader execution algorithm and the related procedures to complete the distance measuring and location [22�C24], the method is simple. The main drawback of RSSI methods is poor location accuracy. In order to overcome this shortcoming, the LANDMARC system [21] uses the reference active tag method, whereby the system is mainly composed of multiple readers and a large number of active tags. The active tags in Drug_discovery the system have two functions: as location reference points, equivalent to the role of the beacon, called reference active tags, and as positioned active tag. The RSSI method requires a large number of reference active tags to improve location accuracy, but this will increase the cost.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>