10). Next, compound 3l belongs to the biggest compounds of the series
and may be literally to Salubrinal expanded to fit 5-Fluoracil supplier to the binding pocket of the potential molecular targets. Values of polar surface area and polarizability cannot be connected with the lack of activity of 3l. Table 3 Parameters for structure–activity relationship studies Compound HOMO LUMO HOMO–LUMO gap PSA Molar volume Polarizability 3a −8.493 −0.064 8.429 56.14 245.2 36.70 3b −8.652 −0.353 8.300 56.14 254.5 38.52 3c −8.704 −0.352 8.352 56.14 254.5 38.52 3d −8.696 −0.405 8.291 56.14 254.5 38.52 3e −8.780 −0.599 8.180 56.14 263.80 40.35 3f −8.646 −0.571 8.075 56.14 263.80 40.35 3g −8.599 −0.102 8.496 56.14 260.40 38.45 3h −8.566 −0.151 8.415 56.14 260.40 38.45 3i −8.581 −0.067 8.514 56.14 275.60 40.21 3j −8.480 −0.091 8.389 65.37 266.80 39.00 3k −8.529 −0.128 8.400 65.37 266.80 39.00 3l −8.552 0.110 8.662 52.98 261.20 38.53 3m −8.628 −0.189 8.438 56.14 254.50 38.52 3n −8.679 −0.368 8.311 56.14 263.80 40.35 3o −8.731 −0.369 8.362 56.14 263.80 40.35 3p −8.722 −0.421 8.301 56.14 263.80 40.35 3q −8.806 −0.613 8.193 56.14 273.00 42.17 3r −8.674 −0.582 8.093 56.14 273.00 42.17 3 s −8.626 −0.124 8.502 56.14 269.70 40.28 3t −8.591 −0.172
8.419 56.14 269.70 40.28 3u −8.608 −0.089 8.519 56.14 284.90 42.03 {Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|buy Anti-diabetic Compound Library|Anti-diabetic Compound Library ic50|Anti-diabetic Compound Library price|Anti-diabetic Compound Library cost|Anti-diabetic Compound Library solubility dmso|Anti-diabetic Compound Library purchase|Anti-diabetic Compound Library manufacturer|Anti-diabetic Compound Library research buy|Anti-diabetic Compound Library order|Anti-diabetic Compound Library mouse|Anti-diabetic Compound Library chemical structure|Anti-diabetic Compound Library mw|Anti-diabetic Compound Library molecular weight|Anti-diabetic Compound Library datasheet|Anti-diabetic Compound Library supplier|Anti-diabetic Compound Library in vitro|Anti-diabetic Compound Library cell line|Anti-diabetic Compound Library concentration|Anti-diabetic Compound Library nmr|Anti-diabetic Compound Library in vivo|Anti-diabetic Compound Library clinical trial|Anti-diabetic Compound Library cell assay|Anti-diabetic Compound Library screening|Anti-diabetic Compound Library high throughput|buy Antidiabetic Compound Library|Antidiabetic Compound Library ic50|Antidiabetic Compound Library price|Antidiabetic Compound Library cost|Antidiabetic Compound Library solubility dmso|Antidiabetic Compound Library purchase|Antidiabetic Compound Library manufacturer|Antidiabetic Compound Library research buy|Antidiabetic Compound Library order|Antidiabetic Compound Library chemical structure|Antidiabetic Compound Library datasheet|Antidiabetic Compound Library supplier|Antidiabetic Compound Library in vitro|Antidiabetic Compound Library cell line|Antidiabetic Compound Library concentration|Antidiabetic Compound Library clinical trial|Antidiabetic Compound Library cell assay|Antidiabetic Compound Library screening|Antidiabetic Compound Library high throughput|Anti-diabetic Compound high throughput screening| 3v −8.506 −0.108 8.398 65.37 276.10 40.83 3w −8.553 −0.150 8.403 65.37 276.10 40.83 3x −8.581 0.076 8.657 56.14 270.50 40.35 HOMO highest occupied molecular orbital,
LUMO lowest unoccupied molecular orbital, Sinomenine PSA polar surface area Fig. 9 HOMO (a, c) and LUMO (b, d) orbitals for 3a (a, b) and 3l (c, d) Fig. 10 The map of the electrostatic potential (ESP) onto a surface of the electron density for 3a (a) and 3l (b) Conclusions Here, we present a series of antinociceptive compounds, designed as exerting their action through opioid receptors (non-classical opioid receptor ligands) but surprisingly devoid of opioid receptor activity. Searching of the molecular target to explain the antinociceptive properties will be the subject of our future studies. Further docking investigations are required to find their binding modes in potential targets and to determine, if they are orthosteric, allosteric, or dualsteric ligands. One main conclusion from the studies is that extension of the non-classical opioid receptor pharmacophore with the additional aromatic moiety results in the lack of opioid receptor activity.