The results indicate it is essential to evaluate antimicrobial strategies over a range of perturbations relevant to the targeted application so that accurate predictions regarding efficacy can be made. Methods Bacterial strains and growth conditions E. coli K-12 MG1655 gene deletion mutants were constructed using the KEIO mutant library and P1 transduction techniques
[50, 51]. E. coli cultures were grown in low salt Luria-Bertani (LB) broth with or without different substrate Talazoparib mw supplements. When added, the supplements were {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| autoclaved separately from the LB medium. The average starting pH of the medium was 6.8. All antibiotics were utilized at a final concentration of 100 ug/ml. The tested antibiotics had different molecular weights so this mass concentration represents a different molar concentration for each agent. Culturing temperatures ranged from 21 to 42°C depending on experiment. Colony biofilm culture antibiotic tolerance testing The colony biofilm culturing NVP-BSK805 method has been described previously [3, 4, 7, 52, 53]. Briefly, colony biofilm systems consist of agar plates, sterile 0.22 μm pore- 25 mm diameter polycarbonate membranes (GE Water and Process Technologies,
K02BP02500), and the desired bacterial strains. The membrane is placed aseptically on agar plates and inoculated with 100 uL of an exponentially growing culture (diluted to OD600 = 0.1). The culture is grown for 6 hours on untreated plates of the desired medium composition. After the initial growth phase, the biofilm is aseptically transferred TCL to either a treated or a control plate where it is incubated for an additional 24 hours. The nutrients and antibiotics enter the biofilm
from below the membrane. Antibiotic penetration of colony biofilms has been studied expensively suggesting the agent readily moves throughout the biofilm [3]. The delivery of antibiotic is diffusion based analogous to the many antibiotic impregnated coating systems. After treatment, the colony biofilms are aseptically transferred to 10 ml glass test tubes pre-filled with 5 mL of sterile phosphate buffered saline. The colony biofilm is vortexed vigorously for 1 minute to separate the cells from the membrane. The membrane is removed and discarded. The dislodged biofilm is homogenized using a tissue homogenizer for 40 seconds to ensure complete physical disaggregation. The homogenized culture is serially diluted and colony forming units (cfu’s) per membrane are enumerated using the drop-plate method [54]. Planktonic culture antibiotic tolerance testing For planktonic antibiotic tolerance experiments, 50 ml cultures were grown exponentially for six hours with shaking (250 ml flask, 150 rpm) at 37°C in untreated medium (with or without 10 g/L glucose). The cells were collected using centrifugation (800 rcf, 20 minutes).