The PCR products were subsequently verified by gel electrophoresis and purified by High Pure PCR Purification Kit (Roche Applied Sciences, Mannheim, Germany). The purified PCR product (200 ng) was digested with 2.0 μl of the restriction enzyme HhaI (Promega Corporation, Madison, USA) at 37°C for 3 h. Two μl of the digested PCR products, 10 μl formamide and 0.50 μl Megabase ET900-R Size Standard (GE Health Care, Buckinghamshire, UK) were mixed and run in duplicates on a capillary electrophoresis genetic analyzer (Genetic Analyzer 3130/3130xl, Applied Biosystems, Carlsberg, I-BET151 CA). The terminal restriction fragments
(T-RFs), representing bacterial fragments in base pair (bp), were obtained and the analysis of T-RF profiles and alignment of T-RFs
against an internal standard was performed using the BioNumerics software SB202190 version 4.5 (Applied Maths, Kortrijk, Belgium). T-RF fragments (range of 60–800 bp) with a difference less than two base pairs were considered identical. Only bands present in both duplicates were accepted as bacterial fragments from which the duplicate with the best intensity was chosen for microbial profiling. The obtained intensities of all T-RFs were imported into Microsoft Excel, and all intensities below 50 were removed. In each sample, the relative intensity of any given AZD3965 chemical structure T-RF was calculated
by dividing the intensity of the T-RF with the total intensity of all T-RFs in the sample. The most predominant T-RFs with a mean relative intensity above one percent were selected for all further analyses and procedures (except calculation of the diversity and similarity) and their identity was predicted in silico, performed in the MiCA on-line software [24] and Ribosomal Database Project Classifier (322.864 Good Quality, >1200) [25]. T-RFLP statistical analysis All T-RFs between 60 and 800 bp were imported into the statistical software programs Stata 11.0 (StataCorp, College Station, TX), Unscrambler version 9.8 (CAMO, for Oslo, Norway) and Microsoft Excel sheets were used for further analyses. Principal component analysis (PCA) was used to explore group differences in the overall microbial communities both for comparisons between cloned pigs and non-cloned controls at the different sampling points and to investigate if samples from pigs with the largest weight-gain during the study period clustered together, irrespective of their genetic background. The latter was also investigated by relating the whole microbial community to the weight-gain at the different sampling points, involving all predominant T-RFs simultaneously in the models.