However, there is no published study concerning this matter

However, there is no published study concerning this matter considering in classical ballet dancers. For this reason, we decided to examine whether adding a supplementary low intensity aerobic training program to regular dance practice would improve VO2max and psychomotor performance in classical ballet dancers. Material and Methods Subjects Six professional female ballet dancers volunteered for the study. All the subjects started dancing at 9 years of age and were subjected to regular dance training for at least 12 years. During their work as members of the corps de ballet (including at least two years immediately preceding the study) they danced on the average about 6 times (a total of 24 h) per week. They had not been involved in other forms of regular physical activity.

After being informed about the purpose of the study, all the subjects signed a written consent to participate in the study. The study protocol was approved by the Ethics Committee of the Academy of Physical Education in Katowice, Poland. All the volunteers were clinically healthy and in good nutritional status, and their habitual diet was assessed with the use of a questionnaire. The dancers recorded their food intake over a 3-day period just before the commencement of exercise tests, and the daily records were analyzed for energy and macronutrients intake using a computer program Dietus (B.U.I. InFit 1995, Poland). Basic anthropometric characteristics of the subjects are presented in Table 1.

Table 1 Basic anthropometric characteristics of the studied subjects Study design The experimental protocol consisted of anthropometric measurements, a psychomotor performance test and graded exercise test for the evaluation of VO2max and anaerobic threshold (AT). All anthropometric measurements, the psychomotor performance test and exercise test were performed both prior to the beginning of aerobic training (pre-T) and following a 6-week supplementary aerobic training (post�CT). Body composition was assessed using bio-electrical impedance (Tanita body composition analyzer TBF-300). All subjects cycled on a 828 Monark (Sweden) ergometer with intensity increasing by 30 W every 3 min until volitional exhaustion. Minute ventilation (Ve) and oxygen uptake (VO2) were analyzed continuously (breath-by-breath) for 1 min at rest and at the third minute of each workload using standard technique of open-circuit spirometry (Yeager).

Heart rate (HR) was recorded continuously using a PE 3000 Sport Tester (Polar Electro, Finland). To determine the anaerobic threshold, fingertip capillary blood samples for lactate concentration assessment were taken at rest, at the third minute of each workload, and at the fifth minute of Cilengitide post-exercise recovery. Blood lactate concentration was measured by the standard enzymatic method using commercial kits (Boehringer-Mannheim, Germany) and a model UV-1201 UV/VIS Shimadzu spectrophotometer.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>