(A) High expression of vimentin in primary melanoma tissue with h

(A) High expression of vimentin in primary melanoma tissue with hematogenous metastasis. beta-catenin phosphorylation ×400 (B) Low expression of

vimentin in primary melanoma tissue without hematogenous metastasis. ×400. Discussion Melanoma metastasis is the most insidious and life-threatening. To identify the metastasis-associated biomarkers may help to provide risk assessments and personal therapeutic strategies for melanoma patients. The earlier detection such accurate biomarkers in the primary tumors, the better prognosis and interventional treatments would patients have. Along with the advanced technologies, a series of high-throughput DNA microarray platforms have been applied to identify genic targets associated with

metastatic biological phenotypes of melanomas [8–10]. However, the proteome is the functional translation of the genome and can regulate cancer cells behavior directly. Neither the DNA sequences nor the amount of RNA could predict post-translational aberrations resulting from phosphorylation, glycosylation find more or proteolysis[11]. So it is reasonable that the proteomics should reflect the tumor characteristic more directly than genomics. Till now, there have been a number of researches focusing on detecting the metastatic biomarkers for melanoma by using the proteomics methodologies [12–14]. The cell lines of different biological features were used as the compared objectives customarily and 2-DE

combined with MS were most favorable methods for proteomics. The traditional 2-DE is short of reproducibility owing Etomidate to gel-to-gel variation. That has been resolved by advanced technique of 2D-DIGE which is of higher sensitivity and reproducibility. In 2D-DIGE, the protein extracts are labeled with fluorescent cyanine dyes, mixed and separated in the same 2D gel where has a unified internal standard [4, 15]. For its ascendancy, we applied it instead of the classical 2-DE in this study. In order to discover metastasis-associated biomarks for melanoma, the research objectives originating from the primary tumors with those corresponding metastases of the same patients are the optimum. Unfortunately, it is too difficult to acquire such specimens clinically. For this reason, we created the mice models bearing spontaneous lung metastasis by using B16-F10 subcutaneously inoculation. That metastatic process could mimic the procedure in the human body. The metastatic “”black spots”" on the mouse lung were picked out, transplanted into the mouse groin and then growed into transplanted tumor which were passaged sequentially and stably. We compared the differential protein profiles to identify which proteins were varied during the metastatic process. In this study, thirty proteins were differential expressed statistically between two groups and thirteen of them were successfully identified by MS.

Comments are closed.