A free flap transfer combined GDC-0973 in vitro with an autologous vein graft can cover large tissue defects and simultaneously improve distal perfusion even in patients with arterial occlusive disease. We are presenting a case of bypass-free radial forearm flap used to cover a foot defect in an old diabetic
patient with peripheral arterial disease. The flap perfusion deteriorated significantly during the early postoperative period. The patient was brought back to the operating room with acute thrombosis of the popliteal-radial venous graft and the arterial pedicle of the flap. The flap was salvaged by thrombectomy and creation of an additional arteriovenous fistula at the distal arterial pedicle. The procedure improved the flap perfusion and decreased the high internal resistance that was noticed in the flap when trying to flush the radial artery during the revision surgery and was evident by continuous wave -Doppler sonography. The successful salvage of the flap in the presented case and the convenient long-term follow up suggest that this technique may be safe and helpful as a last effort to salvage a bypass-free flap with a suspected high internal resistance. © 2013 Wiley Periodicals, Inc. Microsurgery 33:391–395, selleck inhibitor 2013. “
“Although ischemia-reperfusion (I/R) strongly influences muscle flap survival in reconstructive
surgery, there is limited knowledge about its relation to hemorheological parameters and oxidative stress markers in flaps. In the present study we investigated these changes during I/R of latissimus dorsi muscle (LDM) flaps in beagle dogs. In four animals LDM flaps were prepared bilaterally. The right side served as control, while the left side’s vascular pedicle was clamped for 60 minutes, and a 60-minute reperfusion was allowed afterward. Blood samples (0.5 ml each) were taken from the pedicle’s vein bilaterally before and after the ischemia,
and at the 5th, 15th, Astemizole 30th, 45th, and 60th minutes of the reperfusion, for hematological and erythrocyte aggregation tests. In muscle biopsies, taken before and after I/R, histological investigations and tests for measuring gluthation-peroxidase (GSH-PX) activity, glutathione (GSH) and carbonyl concentrations, and thiobarbituric acid reactive substances (TBARS) content were carried out. In I/R side leukocyte count increased during the reperfusion with a peak at the 30th minute. Hematocrit continuously increased from the 15th minute. In the first 5 minutes of the reperfusion, erythrocyte aggregation increased, than tented to be normalized. In muscle homogenates GSH-PX activity did not change markedly, GSH content slightly decreased, carbonyl and TBARS content increased during reperfusion. A 1-hour ischemia and reperfusion of LDM flaps caused local changes of leukocyte distribution and erythrocyte aggregation, supposedly due to the metabolic and inflammatory reactions.