1016/j.bbamem.2012.09.017 16. Wolfe AJ: The acetate switch. Microbiol Mol Biol Rev 2005,69(1):12–50.PubMedCrossRef GDC-0973 nmr 17. Gimenez R,
Nunez MF, Badia J, Aguilar J, Baldoma L: The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 2003,185(21):6448–6455.PubMedCrossRef 18. Jolkver E, Emer D, Ballan S, Krämer R, Eikmanns BJ, Marin K: Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 2009,191(3):940–948.PubMedCrossRef 19. Kasianowicz J, Benz R, McLaughlin S: The kinetic mechanism by which CCCP (carbonyl cyanide m-chlorophenylhydrazone) transports protons across membranes. J Membr Biol 1984,82(2):179–190.PubMedCrossRef 20. Hosie AHF, Allaway D, Poole PS: A monocarboxylate permease
of Rhizobium leguminosarum is the first member of a new subfamily of transporters. J Bacteriol 2002,184(19):5436–5448.PubMedCrossRef 21. Oehmen A, Yuan Z, Blackall LL, Keller J: Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol PI3K inhibitor Bioeng 2005,91(2):162–168.PubMedCrossRef 22. Borghese R, Cicerano S, Zannoni D: Fructose increases the resistance of Rhodobacter capsulatus to the toxic oxyanion tellurite through repression of acetate permease (ActP). Antonie Van Leeuwenhoek 2011,100(4):655–658.PubMedCrossRef click here 23. Burow LC, {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| Mabbett AN, McEwan AG, Bond PL, Blackall LL: Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorus removal. Environ Microbiol 2008,10(1):87–98.PubMed Competing interests The authors declare that they have no competing interests. Authors contributions XS and KFK designed and carried out the studies and drafted the manuscript. JSHT conceived of the study, participated in the design and coordination of the study and drafted the manuscript.
All authors read and approved the final manuscript.”
“Background Bacteriophages have critically important roles in genome diversification and the evolution of virulence and host adaptation of enteric bacteria. Genes encoding Shiga toxins (Stx) 1 and 2 are found on lambdoid phages in Shiga-toxigenic Escherichia coli, while similar Gifsy and Fels phages encode a number of virulence factors in Salmonella enterica serovar Typhimurium. In addition to carrying genes encoding virulence factors, integrated prophage can affect gene expression of the host bacterium. The recent demonstration of three distinct bacteriophages integrated into the genome of Campylobacter jejuni chicken isolate RM1221 suggested that such phages may be common and important for the biology of C. jejuni[1]. At least one of these three C. jejuni integrated elements (CJIEs) [2] was a Mu-like phage inducible with mitomycin C designated CJIE1 (or Campylobacter Mu-like phage 1, CMLP1).