925 × 1011 particles/mL (16-nm AuNPs) and 1.689 × 1011
particles/mL (26-nm AuNPs), we estimated the total surface area simply based on the diameters of the uncoated AuNPs. Thus, the total available surface area in the suspensions was estimated as approximately 6.37 × 10−4 m2/mL (16-nm AuNPs) and 3.59 × 10−4 m2/mL (26-nm AuNPs). We then calculated the Veliparib nmr amount of PEG needed to cover all nanoparticles with a single monolayer of four typical PEG samples (APEG 400, 600, 6,000, and 20,000) occupying areas dictated by their R h (Ro 61-8048 chemical structure Additional file 1: Tables S1 and S2). These numbers were then compared to the total concentration of PEG available in the solution for the bulk concentration used (11.25 mg/mL). This concentration is considered to ensure that there are at least 5 orders of magnitude more PEG molecules than necessary as selleck inhibitor needed to saturate the nanoparticle surfaces, based on the above calculations. The Debye length (κ −1) is the measure of a charge carrier’s net electrostatic effect in the solution and the distance over
which those electrostatic effects persist. It is also appropriately termed the electrostatic ‘screening length,’ beyond which the charges are electrically screened [13]. For a single symmetrical electrolyte in water at room temperature (25°C), it can be readily calculated in the form [13]: (5) where C is the electrolyte concentration (M) and z PRKD3 is the valence of the electrolyte. In this study, we added varying amounts of 10.0% NaCl solution (40, 50, or 60 μL, w/v) to each PEG-coated AuNP solution (1 mL) to screen the electrostatic repulsion between nanoparticles. The electrostatic repulsion originates from the surface underlying the adsorbed polymer layer. The resulting NaCl concentrations were 65.8, 81.5, and 96.9 mM, respectively. The corresponding values of κ −1 were determined to be 1.19, 1.07, and 0.98 nm, which were calculated using the above data and Equation 5. The amount of the salt present in the added 40 μL of 10.0% (w/v) NaCl solution does not ensure complete screening of the electrostatic repulsion. This may be attributed to the fact that
the R h of APEG 400 is 0.568 nm (2R h < κ −1 = 1.19 nm) and the zeta potentials of the fully coated nanoparticles range from −13.4 (APEG 400, 16-nm AuNPs) to −9.5 mV (APEG 20,000, 16-nm AuNPs) and from −12.6 (APEG 400, 26-nm AuNPs) to −8.4 mV (APEG 20,000, 26-nm AuNPs) after adding NaCl solution. The salt added in a 50-μL amount of 10.0% (w/v) NaCl solution can more adequately screen the electrostatic repulsion as a result of the relatively shorter κ −1 with the zeta potentials ranging from −8.3 (APEG 400, 16-nm AuNPs) to −4.8 mV (APEG 20,000, 16-nm AuNPs) and from −7.8 (APEG 400, 26-nm AuNPs) to −4.4 mV (APEG 20,000, 26-nm AuNPs) after NaCl addition. Likewise, the amount of salt for the addition of 60 μL of 10.0% (w/v) NaCl solution can also screen the electrostatic repulsion.