It clearly shows that the as-synthesized SiNWs on silicon substrate remarkably reduce reflectance throughout the entire wavelength range. This low reflectance of SiNWs mainly comes from the multiple reflection of light among SiNW array, which can lengthen the optical path and increase the capture ratio of photon. In AgNP-decorated cases, the reflectance curves lift up a little more than those in bare SiNW array, indicating the scattering effect
of AgNPs. However, at the same time, it demonstrates a clear dip around 380 nm in the reflectance of AgNP-decorated samples, indicating the plasmon resonance absorption of the AgNPs. Furthermore, with the AgNP average size increasing from 19 to 26 nm, some OICR-9429 clinical trial particles become irregular in shape, which makes the resonance dip to broaden and show a red shift. Nevertheless, because screening assay the feature size of the particles is in the range of 19 to 26 nm, scattering behavior will be stronger than absorbing behavior on the whole. Figure 4 Optical reflectance spectra of SiNW arrays. The black square line, red dot line, and blue up-triangle line represent the spectra of SiNW arrays decorated with AgNPs with the diameter of 19, 23, and Selleckchem Tipifarnib 26 nm, respectively. The green down-triangle line represents the reflectance of bare SiNW array without AgNPs. It is well known that the transmittance of silicon in the wavelength region
of 300 to 1,000 nm is almost zero [1]. Therefore, the absorbance of silicon will be directly related to the reflectance. It should also be noticed that the reflected light only contains the part of scattering light which escapes from the structure. Other scattering light from AgNPs will be absorbed by the adjacent SiNWs or experience multiple reflections in the structure. On the other hand, the scattering effect is relative to the dielectric around the particles. That is to say, only after incorporating the polymer into the space of the structure could the scattering light
be utilized effectively. To make the SiNW and polymer composite together efficiently, we deposited polymer onto SiNWs by spin coating at a relative low rotation speed. Figure 5 shows the SEM image of the SiNW array incorporated by P3HT/PCBM. It can be Dimethyl sulfoxide seen that the polymer fills all the space among the SiNWs, which could make the polymer to wrap up all the SiNWs and AgNPs. This structure could provide many benefits for our solar cells. On the one hand, the SiNWs provide high-mobility pathways for carriers. On the other hand, uniformly distributed SiNWs, as supporters of AgNPs, ensure less agglomeration and good dispersity of AgNPs in the organic layer. In device manufacturing process, we directly coated a PEDOT:PSS/ITO/glass substrate on P3HT:PCBM to form a contact. Compared with sputtering, this method could reduce the structure damage of the polymer introduced by particle impact.